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ABSTRACT: If quantum interference patterns in the hearts of
polycyclic aromatic hydrocarbons could be isolated and manipu-
lated, then a significant step toward realizing the potential of
single-molecule electronics would be achieved. Here we
demonstrate experimentally and theoretically that a simple,
parameter-free, analytic theory of interference patterns evaluated
at the mid-point of the HOMO−LUMO gap (referred to as M-
functions) correctly predicts conductance ratios of molecules with
pyrene, naphthalene, anthracene, anthanthrene, or azulene hearts.
M-functions provide new design strategies for identifying
molecules with phase-coherent logic functions and enhancing the
sensitivity of molecular-scale interferometers.

■ INTRODUCTION

Single-molecule electronic junctions are of interest not only for
their potential to deliver logic gates, sensors, and memories
with ultra-low power requirements and sub-10-nm device
footprints, but also for their ability to probe room-temperature
quantum properties at a molecular scale. For example, when a
single molecule is attached to metallic electrodes, de Broglie
waves of electrons entering the molecule from one electrode
and leaving through the other form complex interference
patterns inside the molecule.1−3 Currently there is intense
interest in utilizing these patterns in the optimization of single-
molecule device performance. Indeed, electrons passing
through single molecules have been demonstrated to remain
phase coherent, even at room temperature,3−5 and a series of
theoretical and experimental studies have shown that their
room-temperature electrical conductance is influenced by
quantum interference (QI).6−19

In practice, the task of identifying and harnessing quantum
effects is hampered because transport properties are strongly
affected by the method used to anchor single molecules to
electrodes.20−30 This makes it difficult to identify simple design
rules for optimizing the electronic properties of single
molecules. Furthermore, few analytic formulas are available,
which means that pre-screening of molecules often requires
expensive numerical simulations. In what follows, our aim is to
introduce a new concept for elucidating QI patterns within the
hearts of molecules, caused by electrons entering the molecule
with energies E near the mid-point of the HOMO−LUMO (H-
L) gap. We refer to these mid-gap interference patterns as M-
functions. The approach is intuitive and leads to a simple,

parameter-free, analytical description of molecules with
polycyclic aromatic hydrocarbon (PAH) cores, which agrees
with experiment to an accuracy comparable with that of ab
initio calculations.
A typical single-molecule junction involves metallic electro-

des connected via linker groups to the heart (i.e., core) of the
molecule. Figure 1 shows two such molecules, with a common

pyrene-based heart, connected by acetylene linkers to gold
electrodes. Such PAHs are attractive for molecular elec-
tronics31−35 because they are defect-free and provide model
systems for electron transport in graphene, treated as an infinite
alternant PAH.36,37 As part of our demonstration of the utility
of M-functions, we present mechanically controlled break-
junction (MCBJ) measurements of the electrical conductance
of these molecules. P1 and P2 are examples of molecules with
identical hearts but different connectivities. P1 is connected to
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Figure 1. Two molecules P1 and P2 with common pyrene hearts but
different connectivities to gold electrodes. (See Figure 2 for more
details of the numbering convention used in this study. This does not
correspond to the usual chemical numbering convention, but it is
convenient analytically and allows us to assign labels to all atoms.)
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acetylene linker groups at positions labeled 2 and 9, whereas P2
is connected at positions 3 and 10.
The amplitude of the interference pattern on an atomic

orbital i due to an electron of energy E entering a core at orbital
j will be denoted by the M-function Mi,j(E). In what follows, it
will be convenient to introduce the dimensionless energy EM,
which measures the electron energy relative to the middle of
the H-L gap, EHL, in units of the half-width of the H-L gap. If
EH (EL) is the energy of the HOMO (LUMO) of the core of
the molecule, we define the dimensionless energy EM = (E −
EHL)/δHL, where δHL = (EH − EL)/2 and EHL = (EH + EL)/2.
For PAHs represented by bipartite lattices possessing a
symmetric energy spectrum and a filled HOMO, the mid-gap
energy EHL = 0 lies at the center of the spectrum, and the mid-
gap interference patterns obey simple rules.3 More generally,
mid-gap transport involves interference at finite EHL, and
therefore in what follows, we generalize these rules to
encompass interference patterns at all energies within the
gap. As shown below, this distinction is particularly important
for non-symmetric molecules such as azulene, for which
conventional rules for QI break down.38 When E is close to
EH or EL (i.e., EM = ±1), a Breit−Wigner description based on a
HOMO or LUMO resonance is relevant, and therefore one
might be tempted to suppose that, near the mid-gap, a
description based on a superposition of HOMO and LUMO
levels would suffice. Such a description would not be accurate,
because at EM = 0, states such as HOMO−1, LUMO+1, etc.
make comparable contributions. From the viewpoint of mid-
gap quantum transport, such resonances are a distraction, and
therefore M-functions are defined such that these irrelevancies
are removed.

■ ANALYTIC FORMULAS FOR M-FUNCTIONS

Mathematically we define Mi,j(E) = D(E)Gi,j(E), where Gi,j(E)
is the i,jth element of the Green’s function, G(E) = (E − H)−1,
of the Hamiltonian H describing the isolated core and D(E) is a

function chosen to cancel divergencies of G(E) which arise
when E coincides with an eigenvalue of H. In the absence of
degeneracies, it is convenient to choose D(E) to be
proportional to the determinant of (E − H). (See the
Supporting Information (SI) for more details, along with a
list of M-function properties.)
In what follows we shall construct an intuitive description of

mid-gap transport, which in its simplest form is parameter-free
and describes how connectivity alone can be used to predict the
interference patterns created by electrons of energy EHL passing
through the heart of PAHs. When linker groups, which are
weakly coupled to orbitals i and j, are in contact with metallic
electrodes whose Fermi energy EF lies at the mid-gap EHL, the
resulting (low-temperature) electrical conductance σi,j is
proportional to [Mi,j(EHL)]

2.1,3 Therefore, the ratio of two
such conductances (associated with links i and j or l and m) is
given by the mid-gap ratio rule (MRR):

σ σ = M E M E/ [ ( )/ ( )]i j l m i j l m, , , HL , HL
2

(1)

We report MCBJ measurements of the conductances of
molecules P1 and P2 and show that their statistically most
probable conductances obey the MRR. We also demonstrate
that the MRR agrees with literature measurements of molecules
with naphthalene, anthracene, anthanthrene, and azulene
hearts. This is a remarkable result, since M-functions and the
mid-gap energy EHL contain no information about the
electrodes. This agreement between experiment and the
MRR is evidence that, in these experiments, the Fermi energy
of the electrodes lies close to the mid-gap energy. Having
demonstrated the predictive nature of M-functions, we further
discuss their utility by showing that M-functions lead to new
design strategies for identifying phase-coherent logic functions
and for increasing the sensitivity of molecular-scale interfer-
ometers.
In general, M-functions depend on the parameters describing

the underlying Hamiltonian H of the core. However, for the

Figure 2. Examples of bipartite and non-bipartite molecules and their lattice representation. (a) The upper row shows lattice representations of a
benzene ring, a phenalenylium cation, naphthalene, azulene, and pyrene. The lower row shows connectivity-equivalent representations of these
lattices, which can be viewed as rings of peripheral sites, perturbed by the presence of additional bonds to sites p1, p2, etc. Notice that all lattices
except azulene are bipartite (i.e., odd-numbered sites are connected to even-numbered sites only). (b) The connectivity table C of a benzene ring
and all contributions to eq 3 for the benzene M-function. Notice that C is block off-diagonal, and as a consequence (see eqs (42) and (46) of the SI),
M(0) and M(2) are also block off-diagonal, whereas M(1) is block diagonal.
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purpose of calculating the contribution to interference patterns
from π-orbitals, graphene-like cores can be represented by
lattices of identical sites with identical couplings, whose
Hamiltonian H is simply proportional to a parameter-free
connectivity matrix C. In this case, for electrons of energy E
entering the core at site i and exiting at site j, the M-function
Mij(E) is also parameter-free and depends on connectivity
alone.
As an example, consider a ring of N sites, labeled by integers

which increase sequentially in a clockwise direction, as shown
in Figure 2. For a benzene ring (where N = 6), Figure 2b shows
the corresponding connectivity table C, obtained by placing a
“1” in all entries for which a connection exists between
neighboring sites in the ring. In the simplest π-orbital
description of such a ring, where neighboring sites are
connected by couplings (−γ), the Hamiltonian H is related
to the connectivity matrix C by H = −γC, and as discussed in
the SI, the M-function of the ring is given by1,3

= | − | −M E k j i N( ) cos ( /2)ij (2)

where k(E) = cos−1(−E/2γ). Without loss of generality, the
parameter γ will be set to unity, because it cancels in the MRR,
yielding a parameter-free theory. In this case, EH = −1, EL = 1,
EHL = 0, and the dimensionless energy is EM = E. For a given
value of E, the numbers Mij(E) form a table of energy-
dependent functions, which we call an M-table, M(E). For N =
6, there are four distinct entries, namely Mii(E) = cos 3k =
(3EM/2)(1 − EM

2/3), Mi,i+1(E) = cos 2k = (EM
2/2) − 1,

Mi,i+2(E) = cos k = −EM/2, andMi,i+3(E) = 1. At E = EHL = 0, as
expected, this table reveals that the π-orbital contribution to the
electrical conductance of meta-connected cores such as i = 1
and j = 3 is zero, whereas the conductances of para-connected
cores (i = 1 and j = 4) and ortho-connected cores (i = 1 and j=
2) have the same non-zero conductance. In other words, the
conductance ratio [M13(EHL)/M14(EHL)]

2 vanishes, whereas the
ratio [M12(EHL)/M14(EHL)]

2 = 1. On the other hand, if E is
allowed to vary relative to the H-L gap center, then these ratios
change. This example illustrates a property of the M-function
(see SI for a list of M-function properties), i.e., that M-
functions can be represented by low-order polynomials in EM,
in contrast with Green’s functions, which are non-analytic and
require infinite power series. Indeed, the above expressions can
be written

= + + +E E E E EM M M M M( ) ( ) M
(1) (2) (3)

HL M
2

M
3

(3)

where EHL = 0 and M(3) = −1/2I (with I the unit matrix), and
M(EHL), M

(1), and M(2) are shown in Figure 2b. This result
illustrates another general property of M-functions (see SI),
namely that the low-order M-tables M(1), M(2), etc. can be
constructed from a knowledge of M(EHL) alone. For example,
for benzene, the general relationship (see SI) between these
tables reduces to M(1) = 1/2M

2(EHL) and M(2) = M(EHL)-
{1/4[M

2(EHL) − 5]}, as can be checked by direct multiplication
of M(EHL) in Figure 2b. This means that interference patterns
at energies E in the vicinity of the mid-gap can be generated
solely from the mid-gap interference patterns Mij(EHL).
Equation 2 demonstrates that QI rules established for mid-

gap transport are modified when E ≠ EHL (i.e., EM ≠ 0). For
example, at EM = 0, where Mij(E) = Mij(EHL), Mij vanishes if i
and j are both even or both odd. On the other hand, for finite
EM ≠ 0, this simple rule is invalid, and instead finite-energy M-
tables, as shown in eq 3, should be used.

Equation 2 is the simplest example of an M-function. It is
also a useful starting point for obtaining analytic expressions for
M-functions of other PAH cores, such as those shown in Figure
2a, because if the bonds denoted “−α” in Figure 2a are set to
zero, the peripheral sites of these cores are equivalent to a ring
of N sites, whose M-functions are given by eq 2. On the other
hand, when α = γ, electrons traversing the periphery of the ring
are scattered at peripheral sites p, labeled p1, p2, etc., which are
connected by the bonds α. For example, for pyrene, p1 = 1, p2 =
5, p3 = 8, and p4 = 12. Analytic formulas for the resulting M-
functions of these lattices are presented in the SI. For pyrene
(see eq (25) in the SI), EH = −0.45γ, EL = 0.45γ, and for
naphthalene, EH = −0.62γ, EL = −0.62γ; as expected, for such
bipartite lattices the gap center is at EHL = 0. On the other
hand, for the non-bipartite azulene (see eq (33) in the SI), EH =
−0.48γ, EL = 0.4γ, and the gap center is at EHL = −0.04γ. In this
case, EM = (E + 0.04γ)/0.88γ, and EM = 0 does not coincide
with 0.
Having introduced the concept of M-functions and energy-

dependent M-tables, we now use these to examine mid-gap
conductance ratios of molecules with either bipartite or non-
bipartite PAH cores. First, we examine the conductance ratios
of the pyrene-based molecules P1 and P2 shown in Figure 1,
which possess bipartite cores and for which EHL = 0. Second,
we compare the predictions of the MRR with literature
measurements for the conductances of other molecules with
both bipartite and non-bipartite hearts38 and with DFT and
GW predictions. An analytic formula for the M-functions of a
pyrene heart is derived in the SI. The resulting zero-energy M-
table M(0) is block off-diagonal of the form

= = ̅
̅

⎛
⎝⎜

⎞
⎠⎟E M

M
M M(0)( ) 0

0

t

HL

Figure 3. Calculated conductances of P1 and P2. (a) Numbering
convention for the cores of molecules P1 and P2 shown in Figure 1.
(b) As noted in eq (35) in the SI, the mid-gap M-table M(0) is block

off-diagonal and of the form M(0) = (M̅
0

0
M̅t

). Panel b shows the off-
diagonal block M̅ of the mid-gap M-table. (c) M-functions of P1
(M2,9) and P2 (M3,10) for energies E varying between the pyrene
HOMO (EH) and the pyrene LUMO (EL). Both functions are plotted
against the dimensionless energy EM = (E − EHL)/δHL, where δHL =
(EH − EL)/2 and EHL = (EH + EL)/2. The pyrene HOMO (LUMO)
corresponds to EM = −1 (EM = +1). (d) NEGF results for the
electrical conductance of P1 and P2 as a function of the Fermi energy
EF of the electrodes at zero temperature.
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where M̅ is a table of integers, as shown in Figure 3b. As
examples, M2,9(E) and M3,10(E) are plotted in Figure 3c. These
yield, for P1, M2,9(0) = −3, and for P2, M3,10(0) = −1. Hence,
the MRR predicts a mid-gap conductance ratio of σ2,9/σ3,10 =
(3/1)2 = 9.

■ EXPERIMENTAL AND DFT RESULTS FOR PYRENE
We now verify the above MRR prediction by measuring the
electrical conductances of pyrene cores with trimethylsilyl
(TMS)-protected acetylene groups at different positions, P139

and P2,40 using the MCBJ technique.41 The repeated opening
and breaking cycles are carried out in a solution containing 0.1
mM target molecules in a mixture of THF:TMB (mesitylene) =
1:4 (v:v). Then 0.2 mM tetrabutylammonium (TBAF) in a
mixture of THF:TMB = 1:4 (v:v) solution was added for in situ
cleavage reaction of the TMS protecting group.42,43 Figure 1
shows the schematics of the P1 and P2 molecular junctions via
the anchoring through a C−Au bond between the two gold
electrodes.
Figure 4a shows some typical individual stretching traces

from the MCBJ measurement of P1 and P2 molecules. For

both molecules, current−voltage traces were found to be linear.
A sharp conductance decrease occurs after the rupture of gold−
gold atomic contacts (plateau at conductance quantum G0),
followed by clear but tilted molecular plateaus for the individual
traces. Based on 1000 individual traces, the conductance
histograms were constructed without data selection, as shown
in Figure 4b. The most probable conductance of P1 locates at
10−3.3±0.1G0, while the most probable conductance of P2 is
almost 1 order of magnitude lower at 10−4.2±0.1G0.
The two-dimensional (2D) histograms in Figure 4c,d reveal

that the molecular plateaus are observed in almost all stretching
traces, suggesting a ∼100% junction formation probability by
the in situ cleaving off reaction of the TMS groups, which agrees
well with the previous study using the TMS cleaving-off
reaction for the formation of a single-molecule junction.42 The
stretching distance distributions of the two molecules (insets of
Figure 4c,d) suggest a 0.2 nm difference between the two
molecules, which is in good agreement with X-ray structural
data, giving Si−Si separations of 14.5 Å (P1) (see SI) and 16.0
Å (P2),40 respectively. The experimental conductance ratio of
10−3.3/10−4.2 is approximately 8, which compares favorably with
the MRR prediction of 9. The occurrence of tilted plateaus for
both molecules suggests that, during the stretching process, due
to the enhanced strength of the Au−C interaction, a single gold
atom is detached from the electrode surface, while the gold−
carbon bond does not break.44

To further verify the MRR prediction, Figure 3d shows the
electrical conductances of P1 and P2 as a function of the Fermi
energy EF of the electrodes, obtained from a transport
calculation using a combination of density functional theory
(DFT) and non-equilibrium Green’s functions (NEGF) (see
Computational Methods). From these results, the predicted
conductance ratio varies between 10 and 7 over the range 0 <
EF < 1.2 and achieves a value of 9 at EF = 0.05, which is close to
the DFT-predicted Fermi energy of EF = 0.

■ COMPARISON WITH LITERATURE RESULTS

Pyrene possesses a bipartite heart, in which atoms labeled by
even integers are connected only to atoms labeled by odd
integers and the numbers of odd- and even-numbered atoms
are equal. We now show that M-functions describe non-
bipartite lattices such as azulene, whose M-functions have no
particular symmetry and whose values at the gap center are not
integers. This molecule is a challenge, because well-known
bond counting rules for predicting QI45,46 have been shown to

Figure 4. Measured conductances of P1 and P2. (a) Typical
conductance−relative distance traces and (b) one-dimensional (1D)
conductance histograms of P1 (blue) and P2 (red) molecules. (c,d)
Two-dimensional (2D) conductance histograms and stretching
distance distributions (inset) of P1 (c) and P2 (d).

Table 1. (Top) Comparison of the Mid-gap Ratio Rule (MRR), GW Prediction, and Experimental Conductance Ratios for
Azulene, Obtained by Dividing by the Conductance or M-Function of the 8,10 Connectivity; (Bottom) Comparisons with
Experimental Results from the Literature and with Our Experimental Results for Pyrenea

molecular heart anchor group connectivities literature notation MRR exptl ratio GW predictionb DFT prediction

azulene thiochroman 4,9/8,10 ratio of molecules 2,6,AZ and 1,3,AZ of ref 38 0.72 1 0.32 0.93
azulene thiochroman 6,3/8,10 ratio of molecules 4,7,AZ and 1,3,AZ of ref 38 0.79 0.25 0.32 0.13
azulene thiochroman 3,5/8,10 ratio of molecules 5,7,AZ and 1,3,AZ of ref 38 0.003 0.06 0.1 0.05

naphthalene thiol 7,10/3,8 ratio of molecules 4 and 6 of ref 15 4 5.1 nac 2
anthracene thiol see SI ratio of molecules 5 and 7 of ref 15 16 10.2 nac 13
pyrene carbon 2,9/3,10 P1 and P2 of this paper 9 8 nac 9
anthanthrene pyridyl see SI ratio of molecules 1 and 2 of ref 2 81 79 nac 81

aIt is interesting to note that the mean-square deviations (χ2) of the MRR and GW predictions from the experimental azulene data are 0.37 and 0.44,
respectively, which reveals that, despite its simplicity, the accuracy of the MRR is comparable with that of the GW calculation. bRef 38. cNot
available.
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break down in azulene cores.38 Four examplesM8,10(E),
M4,9(E), M3,6(E), and M3,5(E)of the analytic formula (see SI)
for azulene M-functions are plotted in Figure S1c in the SI.
These examples allow us to test the MRR against measure-
ments of the electrical conductance of molecules with azulene
cores,38 where it was reported that σ8,10 = 32 × 10−5G0, σ4,9= 32
× 10−5G0, σ3,6 = 8 × 10−5G0, and σ3,5 = 2 × 10−5G0, yielding
experimental conductance ratios of σ4,9/σ8,10 = 1, σ5,8/σ8,10 = 1/
4, and σ3,5/σ8,10 = 1/16.
Table 1 shows a comparison between MRR and experiment,

and demonstrates good agreement between the experiment and
our parameter-free MRR. For example, the ratio between
connectivities 4,9 and 8,10 of azulene is measured to be 1,
whereas the GW calculation38 and our DFT-NEGF calculation
yield ratios of 0.32 and 0.93, respectively. These predictions
were obtained by treating the Fermi energy as a free parameter
and adjusting it to yield the closest agreement with experiment.
For example, in the GW calculations, the Fermi energy is
chosen to be far from the GW-predicted Fermi energy (−1.5
eV). In contrast, our parameter-free MRR, which has no such
freedom, predicts a ratio of 0.72, in much better agreement with
the experiment. For completeness, Table 1 also shows excellent
agreement between the parameter-free MRR and existing
experimental values for naphthalene,15 anthracene,15 and
anthanthrene.2

The above result is remarkable, because if the Fermi energy
EF of external electrodes does not coincide with the mid-gap
EHL, then the MRR should be replaced by

σ σ = M E M E/ [ ( )/ ( )]i j l m i j l m, , , F , F
2

(4)

The fact that the MRR agrees with experiment suggests that, in
all of the above measurements, EF is close to the mid-gap.

■ PHASE-COHERENT INTERFEROMETERS AND
LOGIC GATES

The MRR is derived under the assumption that transport
through a molecule is phase-coherent, and since the agreement
in Table 1 between theory and experiment suggests that this
assumption is correct, it is natural to utilize M-tables in the
design of devices with more complex connectivities. In what
follows, we examine theoretical concepts underpinning phase-
coherent logic gates and transport through three-terminal
devices, which illustrate the significance of the signs of the M-
table entries.
In a three-terminal device with phase-coherent inputs of

amplitudes Aj and Ak, and an output site j′, the electrical
conductance σjk;j′ is proportional to |AjMjj′ + AkMkj′|

2 rather than
|AjMjj′|

2 + |AkMkj′|
2. This leads to strategies for designing phase-

coherent transistors and logic gates and optimizing the
sensitivity of molecular-scale Aharonov−Bohm (A-B) interfer-
ometers. As an example, Figure 5a shows a pyrene-based XOR
gate, whose truth table (Figure 5b) is obtained from the fact
that, from the M-table of Figure 3b, M4,9 = −M2,9 = 3, which
means that the conductance between connectivities 2,9 or 4,9
alone would be proportional to |±3|2 = 9 whereas if both inputs
(2 and 4) are “on”, then the conductance would vanish |+3−3|2
= 0. Clearly, higher order logic gates could be obtained by
combining elementary functions such as these. If the core of a
molecule is gated by a third electrode, such that EF no longer
coincides with the mid-gap, then the signs of M-functions at
non-mid-gap energies are relevant, and the electrical con-
ductance is proportional to σjk;j′(EF) = |Mjj′(EF) + Mkj′(EF)|

2.

For the three-fold connectivity of Figure 5a, Figure 5c,d
shows a plot of the electrical conductances σ2,4;9 (EF) and σ2,6;9
(EF) versus EF and demonstrates that M-functions provide
insight into the gate dependence of multiply connected cores
and can be used to select connectivities that enhance or reduce
the sensitivity to electrostatic gating. Since reproducible three-
terminal devices are not currently available in the laboratory, we
illustrate the use of M-functions in three-terminal devices
through a theoretical study of molecular-scale A-B effect and a
molecular-scale logic gate.
A schematic of an A-B device in which a top electrode is

connected to a metallic loop, through which a magnetic flux is
passed, is shown in Figure 6a. The loop connects to two sites, j

Figure 5. Pyrene-based phase-coherent XOR gate. (a) Connections
2,9 and 4,9, with M numbers of opposite sign and equal magnitude,
and (b) the resulting truth table. (c) The Fermi energy dependence of
M29 (blue), M49 (red), and σ2,4;9 (green). (d) The Fermi energy
dependence of M29 (blue), M69 (red), and σ2,6;9 (green). All quantities
are plotted against the dimensionless Fermi energy, EM

F = (EF − EHL)/
δHL.

Figure 6. (a) Schematic of an Aharonov−Bohm loop in which the two
arms of the loop are connected to different atoms of the pyrene core.
A magnetic field B creates a flux φ through the loop and a relative
phase shift θ = 2πφ/φ0 for partial de Broglie waves traversing the
different arms. (b) Electrical conductance as a function of the
dimensionless flux θ for the different connection points to the pyrene
core. The largest amplitude (i.e., flux sensitivity) occurs for the
connectivities σ2,4;9 and σ2,6;9.
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and k, and the current exits through a bottom electrode
connected to site j′. For incoming waves whose amplitudes
differ only by a phase θ, mid-gap electrical conductance is
proportional to σjk;j′ = |Mjj′(EHL) + eiθMkj′(EHL)|

2. If j, k, and j′
are chosen to be 2, 6, and 13, then since M2,13(EHL) = −3 and
M6,13(EHL) = −1, this yields σ2,6;13 = |−3 + (−1)eiθ|2 = 10 +
6 cos(θ), and therefore the amplitude of oscillation (12) is 12/
16 = 75% of the maximum value. The green curve in Figure 6
shows the result of a complete tight-binding calculation of the
conductance versus magnetic flux through the loop φ in units
of the flux quantum φ0. This is related to the phase θ by θ =
2πφ/φ0.
To illustrate how M-tables can be utilized in improving the

sensitivity of such interferometers, we now seek to increase this
amplitude to 100%. From the M-table, the solution is
immediately obvious, because M2,9(EHL)= −3 and M6,9(EHL)
= −3; therefore, if j, k, and j′ are chosen to be 2, 6, and 9, one
obtains σ2,6;9 = |−3 − 3eiθ|2 = 18 + 18 cos(θ), yielding a 100%
amplitude. On the other hand, since M2,9(EHL)= −3 and
M4,9(EHL) = +3, if j, k, and j′ are chosen to be 2, 4, and 9, one
obtains σ2,4;9 = |−3 − 3eiθ|2 = 18 − 18 cos(θ), and therefore a π-
shifted interferometer with a 100% amplitude is obtained.
These features are demonstrated by performing a tight-binding
calculation (see Computational Methods) of the structure of
Figure 6a, the result of which is shown in Figure 6b.

■ CONCLUSION

When electrons enter the heart of a PAH at site j, then
provided the coupling to the linkers is sufficiently weak, the
amplitude of the resulting de Broglie wave at site i is
proportional to the M-function Mij(E). Although the associated
electrical conductance σi,j depends on the nature of the
coupling to the electrodes, the ratio of two such conductances
with different choices of i and j does not. We have shown that
mid-gap M-functions correctly predict conductance ratios of
molecules with bipartite cores such as pyrene and non-bipartite
cores such as azulene. Despite the simplicity of this parameter-
free theory, quantitative agreement with experiment, with
density functional theory, and with many-body GW calculations
was obtained. One of the reasons for this agreement is that the
MRR is independent of the energy gap of the molecules.
Therefore, even though a nearest-neighbor tight-binding model
may not be capable of describing the band gap for some large
PAHs, where hydrogen-induced edge distortion is important
(see, for instance, ref 47), conductance ratios are correctly
predicted.
Since energy-dependent M-functions can be obtained from

gap-center M-tables, this agreement between gap-center values
and experiment gives us confidence that M-functions correctly
predict the energy dependence of interference patterns and
superpositions of these patterns in multiply connected
molecules. As demonstrations of their utility, we have shown
that M-functions can be used to design phase-coherent logic
gates and to optimize the sensitivity of molecular A-B and
electrostatically gated interferometers. The concept of energy-
dependent M-functions is general and, in contrast with theories
of transport resonances, focuses attention on the opposite limit
of transport in the vicinity of the mid-gap. These functions are
properties of a molecular core and generalize QI rules to
arbitrary energies within the H-L gap.

■ COMPUTATIONAL METHODS
The Hamiltonian of the structures described in this paper was
obtained using DFT as described below or constructed from a simple
tight-binding model with a single orbital per atom of site energy ε0 = 0
and nearest-neighbor couplings γ = −1. To calculate the A-B effect, for
the different connection points to the pyrene (Figure 6), the A-B loop
is a ring of 11 atoms, with εA‑B loop = 0.05 and γA‑B loop = −eiθ, where θ
varies in the interval of [0,π].

Density Functional Theory (DFT) Calculation. The optimized
geometry and ground-state Hamiltonian and overlap matrix elements
of each structure were obtained self-consistently using the SIESTA48

implementation of DFT. SIESTA employs norm-conserving pseudo-
potentials to account for the core electrons and linear combinations of
atomic orbitals to construct the valence states. The generalized
gradient approximation (GGA) of the exchange and correlation
functional is used with the Perdew−Burke−Ernzerhof (PBE) para-
metrization,49 a double-ζ polarized (DZP) basis set, and a real-space
grid defined with an equivalent energy cutoff of 250 Ry. Geometry
optimization for each structure is performed until the forces are
smaller than 40 meV/Å.

DFT-NEGF Transport Calculation. The mean-field Hamiltonian
obtained from the converged DFT calculation or a simple tight-
binding Hamiltonian was combined with our implementation of the
NEGF method, the GOLLUM,50 to calculate the phase-coherent
elastic scattering properties of the each system consisting of left
(source) and right (drain) leads and the scattering region. The
transmission coefficient T(E) for electrons of energy E (passing from
the source to the drain) is calculated via the relation T (E) = Tr[ΓR(E)
GR(E)ΓL(E)G

R†(E)]. In this expression, ΓL,R(E) = i[∑L,R(E) −
∑L,R

†(E)] describes the level broadening due to the coupling between
left (L) and right (R) electrodes and the central scattering region,
∑L,R(E) are the retarded self-energies associated with this coupling,
and GR = (ES − H − ∑L − ∑R)

−1 is the retarded Green’s function,
where H is the Hamiltonian and S is the overlap matrix. Using the
obtained transmission coefficient T(E), the conductance could be
calculated51 by the Landauer formula, G = G0∫ dET(E)(−∂f/∂E),
where G0 = 2e2/h is the conductance quantum and f(E) = (1 + exp[(E
− EF)/kBT])

−1 is the Fermi−Dirac distribution function, T is the
temperature, and kB = 8.6 × 10−5 eV/K is the Boltzmann’s constant.

Analytical Methods. M-functions are related to the Green’s
function of an isolated core by Mi,j(E) = D(E)Gi,j(E), where D(E) is
proportional to det(E − H), divided by a polynomial to remove
degenerate eigenvalues. Since we are only interested in sites i,j which
can be connected by linkers to external electrodes, we solve Dyson’s
equation to obtain the “peripheral Green’s function” Gi,j(E) connecting
only sites on the periphery of a core (see SI).
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Cortie, M. B. J. Phys.: Condens. Matter 2008, 20, 025207.
(45) Markussen, T.; Stadler, R.; Thygesen, K. S. Nano Lett. 2010, 10,
4260.
(46) Yoshizawa, K.; Tada, T.; Staykov, A. J. Am. Chem. Soc. 2008,
130, 9406.
(47) Gunlycke, D.; White, C. T. Phys. Rev. B: Condens. Matter Mater.
Phys. 2008, 77, 115116.
(48) Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.;
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